Factorial Learning by Clustering Features
نویسندگان
چکیده
We introduce a novel algorithm for factorial learning, motivated by segmentation problems in computational vision, in which the underlying factors correspond to clusters of highly correlated input features. The algorithm derives from a new kind of competitive clustering model, in which the cluster generators compete to explain each feature of the data set and cooperate to explain each input example, rather than competing for examples and cooperating on features, as in traditional clustering algorithms. A natural extension of the algorithm recovers hierarchical models of data generated from multiple unknown categories, each with a different, multiple causal structure. Several simulations demonstrate the power of this approach.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملSimultaneous Unsupervised Learning of Disparate Clusterings
Most clustering algorithms produce a single clustering for a given data set even when the data can be clustered naturally in multiple ways. In this paper, we address the difficult problem of uncovering disparate clusterings from the data in a totally unsupervised manner. We propose two new approaches for this problem. In the first approach we aim to find good clusterings of the data that are al...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کامل